Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 13(4): e0121123, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38501780

ABSTRACT

The white spot syndrome virus (WSSV) is a causative agent of white spot disease (WSD) in crustaceans, especially in cultivated black tiger shrimp (Penaeus monodon), leading to significant economic losses in the aquaculture sector. The present study describes four whole genome sequences of WSSV obtained from coastal regions of Bangladesh.

2.
Immun Inflamm Dis ; 12(2): e1171, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38415978

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has had a severe impact on population health. The genetic determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in southern Bangladesh are not well understood. METHODS: This study aimed to determine the genomic variation in SARS-CoV-2 genomes that have evolved over 2 years of the pandemic in southern Bangladesh and their association with disease outcomes and virulence of this virus. We investigated demographic variables, disease outcomes of COVID-19 patients and genomic features of SARS-CoV-2. RESULTS: We observed that the disease severity was significantly higher in adults (85.3%) than in children (14.7%), because the expression of angiotensin-converting enzyme-2 (ACE-2) diminishes with ageing that causes differences in innate and adaptive immunity. The clade GK (n = 66) was remarkable between June 2021 and January 2022. Because of the mutation burden, another clade, GRA started a newly separated clustering in December 2021. The burden was significantly higher in GRA (1.5-fold) highlighted in mild symptoms of COVID-19 patients than in other clades (GH, GK, and GR). Mutations were accumulated mainly in S (22.15 mutations per segment) and ORF1ab segments. Missense (67.5%) and synonymous (18.31%) mutations were highly noticed in adult patients with mild cases rather than severe cases, especially in ORF1ab segments. Moreover, we observed many unique mutations in S protein in mild cases compared to severe, and homology modeling revealed that those might cause more folding in the protein's alpha helix and beta sheets. CONCLUSION: Our study identifies some risk factors such as age comorbidities (diabetes, hypertension, and renal disease) that are associated with severe COVID-19, providing valuable insight regarding prioritizing vaccination for high-risk individuals and allocating health care and resources. The findings of this work outlined the knowledge and mutational basis of SARS-CoV-2 for the next treatment steps. Further studies are needed to confirm the effects of structural and functional proteins of SARS-CoV-2 in detail for monitoring the emergence of new variants in future.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics , Bangladesh/epidemiology , Adaptive Immunity , Aging
3.
Mol Biol Rep ; 51(1): 38, 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38158480

ABSTRACT

BACKGROUND: The host-microbe interactions are complex, dynamic and context-dependent. In this regard, migratory fish species like hilsa shad (Tenualosa ilisha), which migrates from seawater to freshwater for spawning, provides a unique system for investigating the microbiome under an additional change in fish's habitat. This work was undertaken to detect taxonomic variation of microbiome and their function in the migration of hilsa. METHODS AND RESULTS: The study employed 16S rRNA amplicon-based metagenomic analysis to scrutinize bacterial diversity in hilsa gut, skin mucus and water. Thus, a total of 284 operational taxonomic units (OTUs), 9 phyla, 35 orders and 121 genera were identified in all samples. More than 60% of the identified bacteria were Proteobacteria with modest abundance (> 5%) of Firmicutes, Bacteroidetes and Actinobacteria. Leucobacter in gut and Serratia in skin mucus were the core bacterial genera, while Acinetobacter, Pseudomonas and Psychrobacter exhibited differential compositions in gut, skin mucus and water. CONCLUSIONS: Representative fresh-, brackish- and seawater samples of hilsa habitats were primarily composed of Vibrio, Serratia and Psychrobacter, and their diversity in seawater was significantly higher (P < 0.05) than freshwater. Overall, salinity and water microbiota had an influence on the microbial composition of hilsa shad, contributing to host metabolism and adaptation processes. This pioneer exploration of hilsa gut and skin mucus bacteria across habitats will advance our insights into microbiome assembly in migratory fish populations.


Subject(s)
Fishes , Microbiota , Animals , RNA, Ribosomal, 16S/genetics , Fishes/genetics , Fresh Water , Bacteria/genetics , Microbiota/genetics , Water
4.
J Med Virol ; 95(4): e28691, 2023 04.
Article in English | MEDLINE | ID: mdl-36946508

ABSTRACT

Populations of different South Asian nations including Bangladesh reportedly have a high risk of developing diabetes in recent years. This study aimed to investigate the differences in the gut microbiome of COVID-19-positive participants with or without type 2 diabetes mellitus (T2DM) compared with healthy control subjects. Microbiome data of 30 participants with T2DM were compared with 22 age-, sex-, and body mass index (BMI)-matched individuals. Clinical features were recorded while fecal samples were collected aseptically from the participants. Amplicon-based (16S rRNA) metagenome analyses were employed to explore the dysbiosis of gut microbiota and its correlation with genomic and functional features in COVID-19 patients with or without T2DM. Comparing the detected bacterial genera across the sample groups, 98 unique genera were identified, of which 9 genera had unique association with COVID-19 T2DM patients. Among different bacterial groups, Shigella (25%), Bacteroides (23.45%), and Megamonas (15.90%) had higher mean relative abundances in COVID-19 patients with T2DM. An elevated gut microbiota dysbiosis in T2DM patients with COVID-19 was observed while some metabolic functional changes correlated with bidirectional microbiome dysbiosis between diabetes and non-diabetes humans gut were also found. These results further highlight the possible association of COVID-19 infection that might be linked with alteration of gut microbiome among T2DM patients.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Diabetes Mellitus, Type 2/complications , Cross-Sectional Studies , RNA, Ribosomal, 16S/genetics , Dysbiosis/microbiology , Bangladesh/epidemiology , SARS-CoV-2/genetics , Bacteria/genetics
5.
Can J Infect Dis Med Microbiol ; 2022: 7071009, 2022.
Article in English | MEDLINE | ID: mdl-36249592

ABSTRACT

Background: Multidrug-resistant (MDR) clones of Klebsiella pneumoniae (Kpn) have been increasingly documented in community-acquired and nosocomial infections all around the globe. Extended-spectrum ß-lactamases (ESBLs) are a rapidly evolving group of ß-lactamase enzymes derived from SHV genes by mutations. This research work aimed to investigate and analyze the widespread prevalence of Kpn antibiotic resistance in different areas of the southern part of Bangladesh. Methods: This particular study was executed and implemented by using 501 clinical samples or isolates from two different hospitals in Chattogram. The disk diffusion method was used to detect Kpn's sensitivity to 16 antibiotics in a drug susceptibility test. By using the PCR technique, the widespread prevalence of antibiotic-resistant gene blaSHV-11 was studied. Sequencing along with phylogenetic analysis was utilized to verify isolates with the blaSHV-11 gene. Results: Almost all of the Kpn isolates were spotted to be antibiotic-resistant. These Kpn isolates were resistant to ß-lactams, aminoglycosides, and quinolones at high levels. The spatial analysis displayed that infections involving Kpn were more common in the urban areas (70%) than in the rural areas (30%). Neonates had substantially higher levels (p < 0.001) of resistance to multidrug than other age groups. Cefepime was identified as the most frequent antibiotic-resistant to all age groups (56.68%). The highest numbers of resistant isolates (36.92%) were found in urine samples. The ESBL gene blaSHV-11 was found in 38% isolates. Conclusion: The significant frequency of MDR Kpn harboring ß-lactamases and AMR genes strongly suggests the requirement to develop effective antimicrobial resistance control and prevention measures in Bangladesh.

6.
PLoS One ; 16(9): e0257419, 2021.
Article in English | MEDLINE | ID: mdl-34506611

ABSTRACT

OBJECTIVE: This study was performed to investigate the prevalence of multidrug resistance and molecular characterization of Klebsiella pneumoniae (KPN) from clinical isolates in the southern region of Bangladesh. Additional analysis of the prevalence of blaNDM-1, blaSHV-11, uge genes of KPN was also carried out among these clinical isolates. METHOD: The study was carried out using 1000 clinical isolates collected from two different hospitals of Chattogram. A drug susceptibility test was performed by the disk diffusion method to detect KPN's response to 16 antibiotics. The presence of antibiotic-resistant and (or) virulent genes blaNDM-1, blaSHV-11, uge were investigated using the PCR technique. Isolates having blaNDM-1, blaSHV-11, uge gene were further validated by sequencing followed by phylogenetic analysis. Phylogenetic relationships among these isolates were determined by Clustal omega and MEGA7. RESULT: A total of 79%, 77%, 74.9%, 71%, 66% and 65% isolates exhibited resistance against cefuroxime, cefixime, cefotaxime, ceftazidime, cefepime and ceftriaxone respectively. The frequency of resistance to other antibiotics varied from 26.5% to 61.8%. PCR analysis showed that 64% of strains harbored blaNDM-1 gene, and 38% strains harbored blaSHV-11 gene. Moreover, 47% of samples were carrying uge gene, and 19% of samples carried blaNDM-1, blaSHV-11, uge genes together. CONCLUSION: In this study, we've analysed the pattern of expression as well as prevalence of blaNDM-1, blaSHV-11, and uge genes in Klebsiella isolates. Upon molecular and statistical analysis, we found a high prevalence of multi-drug resistance KPN strains in the isolates. The Klebsiella isolates were confirmed to harbor multiple ESBL genes and 64% of the isolates were found to be producing NDM-1. As multidrug resistance is an alarming issue, continuous surveillance and routine clinical detection of resistant bacteria and plasmids are necessary to prevent catastrophic public health incidents.


Subject(s)
Drug Resistance, Bacterial , Drug Resistance, Multiple, Bacterial , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Adolescent , Adult , Alleles , Anti-Bacterial Agents/pharmacology , Bangladesh/epidemiology , Diffusion , Drug Resistance, Multiple, Bacterial/genetics , Female , Genes, Bacterial , Geography , Humans , Infant, Newborn , Inpatients , Male , Middle Aged , Multilocus Sequence Typing/methods , Phylogeny , Polymerase Chain Reaction , Prevalence , Young Adult , beta-Lactamases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...